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Synchronous Reactive Components
Weekly Exercise 1.1

Design a reactive component with three Boolean input variables x, y and reset, and a
Boolean output variable z. The desired behaviour is the following. The component waits
until is has encountered a round in which the input variable x is high (1) and a round in
which the input variable y is high (1), and as soon as both of these have been
encountered it sets the output z to high. It repeats the behaviour when, in a subsequent
round, the input variable reset is high. By default the output z is low (0).

Solution: We can model this using an extended state machine with four states:

1. Synchronous Reactive Components
2. Elevator System Specification
3. Composition of Components
4. Task Graphs and Await Dependencies
5. Safety Requirements and Verification
6. Symbolic Verification Algorithms
7. Binary Decision Diagrams
8. Temporal Logic and Büchi Automata
9. Controller Synthesis

initial : Neither x nor y has been high yet
x_seen : x has been high, but not y
y_seen : y has been high, but not x
both_seen : Both x and y have been high

// Extended State Machine Notation

// State variables

enum mode := {initial, x_seen, y_seen, both_seen} mode := initial;

bool z := 0;

// Mode switches

initial → x_seen    : x=1 & y=0 & reset=0

initial → y_seen    : x=0 & y=1 & reset=0

initial → both_seen : x=1 & y=1 & reset=0, z:=1

x_seen → x_seen    : x=0 & y=0 & reset=0



Weekly Exercise 1.2

Design a synchronous reactive component CountPositive with an integer input variable x,
an input event variable reset, and a natural output variable y, with the following
behaviour. In the first round, the output y is 0. For every subsequent round i, let j < i the
most recent round before round i in which the event reset is present (if reset is absent in
all rounds before i, then j = 0): the output y should be the number of rounds in which the
variable y is positive (greater than 0) in rounds j, j + 1 up to i − 1.

Solution:

This component is deterministic as it has a single possible reaction for each input. It is not
finite-state because the count  variable can grow unboundedly.

x_seen → both_seen : (x=0 | x=1) & y=1 & reset=0, z:=1

x_seen → initial   : reset=1, z:=0

y_seen → y_seen    : x=0 & y=0 & reset=0

y_seen → both_seen : x=1 & (y=0 | y=1) & reset=0, z:=1

y_seen → initial   : reset=1, z:=0

both_seen → both_seen : reset=0

both_seen → initial   : reset=1, z:=0

// Component definition

event reset;

int x;

nat y;

// State variables

nat count := 0;  // Counts positive inputs since last reset

// Reaction code

if reset? then {

count := 0;

y := 0;

} else {

if x > 0 then {

count := count + 1;

}

y := count;

}



Weekly Exercise 1.3

Consider the component Counter of the figure below. The component is not input-
enabled: why? Modify the component to make it input-enabled.

Solution: The component is not input-enabled because when x = 0  and dec = 1 , there is
no reaction defined (it tries to decrement a counter that's already at 0).

Modified component to make it input-enabled:

Exercise 1 (ex-1001.pdf)
What does this component do? Describe in words the behaviour of the component.

The component referred to is likely the "Delay" component from other exercises. This
component takes a Boolean input and outputs the previous value of the input. The output in
the first round is 0 (the initial value of the state variable).

Exercise 2 (ex-1001.pdf)

Desired behaviour: Issue the output event out every 60th time the input event is present.
Write the reaction code of the component.

Solution:

nat x := 0;

nat out;

if (inc = 1 && dec = 0) then {

x := x + 1; 

out := x;

} else if (inc = 0 && dec = 1 && x > 0) then {

x := x - 1; 

out := x;

} else if (inc = 0 && dec = 0) then {

out := x;

} else if (inc = 1 && dec = 1) then {

out := x;  // Conflicting inputs, keep value

} else if (inc = 0 && dec = 1 && x = 0) then {

out := x;  // Cannot decrement at 0, keep value

}

event second;

event minute;

int x := 0;



Composition of Components
Exercise 1 (ex-1006.pdf)

Consider the feedback compositions Delay ǁ Inverter...

Solution: a. Input variables: ∅ (empty set) - Both inputs are connected internally b. Output
variables: {out}  c. State variables: {x}  d. Initialization: x := 0  e. Reaction code:

Exercise 2 (ex-1006.pdf)

Consider the feedback compositions Relay ǁ Inverter...

Solution: a. Input variables: ∅ (empty set) b. Output variables: {out}  c. State variables: ∅
(empty set) d. Initialization: None (no state variables) e. Reaction code:

This creates an oscillator that toggles the output value in each round.

Task Graphs and Await Dependencies
Exercise 1 (ex-1011.pdf)

Consider the synchronous reactive component shown in Figure 1. List all possible
reactions of the component. Does the output y await x? Does the output z await x?

Solution: Reactions:

if second? then {

x := x + 1;

if x = 60 then {

minute!;

x := 0;

}

}

out := x;

x := ~out;

out := ~out;

In task A₁: The output y  is set to the value of u
In task A₂: State variable u  is set to ¬x  and output z  is set based on choose(x, u)



The output y  does not await x  because task A₁ does not read x . The output z  awaits x
because task A₂ reads x  before writing to z .

Exercise 2 (ex-1011.pdf)

Consider a synchronous reactive component C with an input variable x, and output
variables y and z. The component has two tasks, A₁ and A₂, such that the output y
belongs to the write-set of the task A₁, and the output z belongs to the write-set of the
task A₂. If we know that the output y awaits the input x, but the output z does not await x,
then what can we conclude regarding the precedence constraints between the tasks A₁
and A₂?

Solution: If the output y  awaits input x , then task A₁ must read x  in its read-set. If the
output z  does not await input x , then task A₂ must not read x .

Since task A₁ reads x  and task A₂ writes to z  without reading x , there cannot be a
precedence constraint A₂ ≺ A₁ (otherwise z  would await x  transitively).

There might be a constraint A₁ ≺ A₂ if A₂ reads any variable written by A₁, but this is not
necessarily the case from the given information.

Exercise 1 (ex-1012.pdf)
List the await dependencies of the components in Figure 1.

Solution: For component C:

For component D₁:

For component D₂:

Exercise 2 (ex-1012.pdf)

Are the components C and D₁ compatible? If they are compatible, describe the input-
output behaviour of the composition (CǁD₁) \ {y, z}.

Solution: To determine compatibility, we need to check if:

Output y  awaits input u , which doesn't await anything (initialized to 0)
Output z  awaits input x
Output u  awaits input x

Output x  awaits inputs y  and z  directly

Output x  awaits state variable t , which in turn awaits inputs y  and z
Therefore, x  awaits y  and z

1. The output sets are disjoint



Output sets: C outputs {y, z, u} and D₁ outputs {x}. These are disjoint.

Await dependencies:

This creates a cycle: x  awaits y  and z , while z  awaits x .

Therefore, C and D₁ are not compatible due to a cyclic await-dependency relation.

Exercise 3 (ex-1012.pdf)

Are the components C and D₂ compatible? If they are compatible, describe the input-
output behaviour of the composition (CǁD₂) \ {y, z}.

Solution: Output sets: C outputs {y, z, u} and D₂ outputs {x, t}. These are disjoint.

Await dependencies:

There is no cycle in the await dependencies. Therefore, C and D₂ are compatible.

The behavior of (CǁD₂) \ {y, z} would have:

In each round, component C computes y  from u , then D₂ computes t  from y  and z .
Next, C computes z  and u  from x , and finally D₂ computes x  from t . This creates a
feedback loop that stabilizes within each round.

Exercise 4 (ex-1012.pdf)
Define a variant C' of component C such that C' and D₁ are compatible and (C'ǁD₁) \ {y, z}
is equivalent to (CǁD₂) \ {y, z} with respect to the input-output behaviour.

Solution: To make C' compatible with D₁, we need to break the cyclic await dependency. We
can modify C to:

2. The combined await-dependency relation is acyclic

In C: y  awaits nothing, z  awaits x , u  awaits x
In D₁: x  awaits y  and z

In C: y  awaits nothing, z  awaits x , u  awaits x
In D₂: t  awaits y  and z , x  awaits t

Input variables: none (all are connected internally)
Output variables: {u, x}
State variables: {u, t}

bool u := 0;

bool x;



This eliminates the await dependency of u  on x  in the current round, breaking the cycle.

Exercise 1 (ex-1011.pdf - DoubleSplitDelay)

Consider the component DoubleSplitDelay defined as (SplitDelay[out 7→
temp]ǁSplitDelay[in 7→ temp]) \ temp. This component is similar to the component
DoubleDelay except we use instances of the component SplitDelay. Show the "compiled"
version of DoubleSplitDelay.

Solution: The compiled version of DoubleSplitDelay has:

State variables: {x₁, x₂} (one from each SplitDelay instance) Input variables: {in} Output
variables: {out} Local variables: {temp}

Tasks:

Precedence constraints:

Await dependencies:

By transitivity, out awaits in with a delay of 2 rounds.

Safety Requirements and Verification
Weekly Exercise 3.1

bool y;

bool z;

A₁: u → y   (y := u)

A₂: x → z   (z := x)

A₃: → u     (u := ¬x from previous round)

A₁₁: x₁ → temp
A₂₁: temp → x₂

A₁₂: x₂ → out
A₂₂: in → x₁

A₁₁ ≺ A₂₁ (temp is read by A₂₁ after being written by A₁₁)
A₁₂ ≺ A₂₂ (no dependency, but needed for SplitDelay₂)

temp awaits x₁
x₂ awaits temp
out awaits x₂
x₁ awaits in



Given two natural numbers m and n, consider the transition system Mult(m, n) that
multiplies the input numbers n, m shown in the figure below. Describe this transition
system symbolically using initialization formula φᵢ and transition formula φₜ.

Solution: For the Mult(m, n) system:

Initialization formula φᵢ:

Transition formula φₜ:

Weekly Exercise 3.2

Define a pre-image computation Pre using the symbolic operations.

Solution: The pre-image computation Pre(A, Trans) can be defined as:

Where:

Weekly Exercise 3.3

Suppose we want to modify the symbolic breadth-first search algorithm so that when it
finds the property φ to be reachable, it outputs a witness execution.

Solution: Additional operations needed:

Modified algorithm:

φᵢ ≡ (mode = loop) ∧ (x = m) ∧ (y = 0)

φₜ ≡ (mode = loop ∧ x = 0 ∧ mode' = stop ∧ x' = x ∧ y' = y) ∨
(mode = loop ∧ x > 0 ∧ mode' = loop ∧ x' = x-1 ∧ y' = y+n)

Pre(A, Trans) = Exists(Intersect(Rename(A, S, S'), Trans), S')

A is the region for which we want to compute pre-images
Trans is the transition relation
S is the set of state variables
S' is the set of primed state variables
Rename(A, S, S') renames variables in S to their primed versions in S'
Intersect computes the intersection of two regions
Exists performs existential quantification over variables

PickState(A) : Returns a representative state from a non-empty region A
Pre(s, Trans) : Computes the set of predecessors of a specific state s



Exercise 1 (ex-1015.pdf)

The system RailRoadSystem2 = TrainW ǁ TrainE ǁ Controller2 has six state variables
and 144 possible states. How many states are reachable?

Solution: To determine the number of reachable states, we need to analyze the constraints
imposed by the Controller2 on the composed system:

From these constraints, the states where both trains are on the bridge simultaneously are
unreachable. Additionally, states where a train is on the bridge but its signal is red are also
unreachable.

The analysis shows that the number of reachable states is 42 out of the total 144 states.

Enumerative Search (ex-1015.pdf)

Write an algorithm that takes as inputs a transition system T and a property φ. If φ is
reachable in T your algorithm should return a witness, that is, an execution of T that
starts from an initial state and ends in a state where φ is satisfied.

function WitnessReachable(Init, Trans, φ)

Reach ← Init

New₁ ← Init

k ← 1

while not IsEmpty(Newₖ) do
if not IsEmpty(Intersect(Newₖ, φ)) then

s ← PickState(Intersect(Newₖ, φ))
path ← [s]  // path is a list of states

for i ∈ {k-1, ..., 1} do
Pred ← Intersect(Pre(s, Trans), Newᵢ)
s ← PickState(Pred)

append s to the front of path

end for

return path

end if

Newₖ₊₁ ← Diff(Post(Newₖ, Trans), Reach)
Reach ← Union(Reach, Newₖ₊₁)
k ← k + 1

end while

return [ ]  // φ not reachable: return empty path

end function

1. The controller ensures that west and east signals are never both green
2. The controller ensures that a train can only be on the bridge if its signal is green



Solution:

Symbolic Verification Algorithms
Weekly Exercise 4.1

Write the pseudo-code for the function CountFalse(B) that takes a ROBDD B with n
variables x₁, ..., xₙ, and returns the number of valuations for the n variables making B
false.

function Reachable(T, φ)

Reach ← ∅
s ← FirstInitState(T)

while s ≠ null do

if s ∉ Reach then
exec ← DFS(s, φ, Reach)

if exec ≠ ∅ then
return exec

end if

end if

s ← NextInitState(T, s)

end while

return ∅
end function

function DFS(s, φ, Reach)

Reach ← Reach ∪ {s}
if Satisfies(s, φ) then

return List(s)

end if

t ← FirstSuccState(T, s)

while t ≠ null do

if t ∉ Reach then
exec ← DFS(t, φ, Reach)

if exec ≠ ∅ then
return Append(s, exec)

end if

end if

t ← NextSuccState(T, s, t)

end while

return ∅
end function



Solution:

function CountFalse(B)

return CountPaths(B, 0) * 2^NumMissingVars(B)

end function

function CountPaths(B, target)

if B = target then

return 1

else if B = (1-target) then

return 0

else

B_node ← BDDPool[B]

low_count ← CountPaths(Low(B_node), target)

high_count ← CountPaths(High(B_node), target)

return low_count + high_count

end function

function NumMissingVars(B)

if B = 0 or B = 1 then

return n

else

B_node ← BDDPool[B]

vars_seen ← 1  // Current variable

current_var ← Label(B_node)

low_missing ← NumMissingVarsRec(Low(B_node), current_var + 1)

high_missing ← NumMissingVarsRec(High(B_node), current_var + 1)

return max(low_missing, high_missing)

end if

end function

function NumMissingVarsRec(B, next_expected_var)

if B = 0 or B = 1 then

return n - next_expected_var + 1

else

B_node ← BDDPool[B]

current_var ← Label(B_node)

// Count skipped variables

skipped ← current_var - next_expected_var



Weekly Exercise 4.2

Write the pseudo-code for the algorithm Until(T, Good, Target).

Solution:

low_missing ← NumMissingVarsRec(Low(B_node), current_var + 1)

high_missing ← NumMissingVarsRec(High(B_node), current_var + 1)

return skipped + max(low_missing, high_missing)

end if

end function

function Until(T, Good, Target)

// Initialize

Reach ← Init

New ← Init

States ← [Init]  // Track states at each level for witness construction

// Compute reachable states while staying in Good

while not IsEmpty(New) do

// Check if Target reached

Reached ← Intersect(New, Target)

if not IsEmpty(Reached) then

// Construct witness path

return ConstructWitness(States, Reached, Target)

end if

// Compute next states that stay in Good

NextNew ← Intersect(Post(New, Trans), Good)

NextNew ← Diff(NextNew, Reach)

// Update sets

if IsEmpty(NextNew) then

// Cannot reach Target within Good

return ∅
end if

Reach ← Union(Reach, NextNew)

New ← NextNew

States.append(New)

end while



Binary Decision Diagrams
Exercise 1 (ex-1023.pdf)

Draw a BDD for the formula XOR(x₂, x₁), where XOR is the exclusive-or operator.

Solution: The BDD for XOR(x₂, x₁) with variable ordering x₂ < x₁:

Exercise 2 (ex-1023.pdf)

return ∅  // Target not reachable within Good
end function

function ConstructWitness(States, Reached, Target)

path ← []

state ← PickState(Reached)

path.prepend(state)

// Work backwards from target state to initial state

for i from States.length-1 downto 0 do

// Find predecessor in previous level

pred_set ← Intersect(Pre({state}, Trans), States[i])

if not IsEmpty(pred_set) then

pred ← PickState(pred_set)

path.prepend(pred)

state ← pred

else

// Should not reach here if algorithm is correct

return ∅
end if

end for

return path

end function

x₂

/  \

/    \

x₁    x₁

/ \    / \

0   1  1   0



Draw a BDD for the formula XOR(x₃, XOR(x₂, x₁)).

Solution: The BDD for XOR(x₃, XOR(x₂, x₁)) with variable ordering x₃ < x₂ < x₁:

This can be reduced to:

Exercise 3 (ex-1023.pdf)

How many x₁ nodes are in a (reduced) BDD for x₄ ⊕ x₃ ⊕ x₂ ⊕ x₁?

Solution: In an n-variable parity function, each level i has 2^(i-1) nodes. For x₄ ⊕ x₃ ⊕ x₂ ⊕
x₁ with ordering x₄ < x₃ < x₂ < x₁, level x₁ will have 2^(4-1) = 2^3 = 8 nodes.

Exercise 4 (ex-1023.pdf)
How many total nodes are there in the (reduced) BDD for xₙ ⊕ ... ⊕ x₁?

Solution: For an n-variable parity function:

Total number of nodes = 1 + 2 + 4 + ... + 2^(n-1) = 2^n - 1

x₃

/  \

/    \

x₂    x₂

/ \    / \

x₁  x₁  x₁  x₁

/\ /\  /\ /\

1 0 0 1 0 1 1 0

x₃

/  \

/    \

x₂    x₂

/ \    / \

x₁  x₁  x₁  x₁

/\ /\  /\ /\

1 0 0 1 0 1 1 0

Level 1 (xₙ): 1 node
Level 2 (xₙ₋₁): 2 nodes
Level 3 (xₙ₋₂): 4 nodes
...
Level n (x₁): 2^(n-1) nodes



Exercise 1 (ex-1104.pdf)

Write the pseudo-code for the function Exists(B, x) that takes as inputs a ROBDD B, a
variable x, and returns a ROBDD representing the boolean function ∃x.f(B).

Solution:

Exercise 2 (ex-1104.pdf)
Write the pseudo-code for the function Restrict(B, x, b) that takes a ROBDD B, a variable
x and a boolean value b ∈ {0, 1}, and returns the ROBDD representing the function f(B)[x
↦ b].

Solution:

function Exists(B, x)

// Base cases

if B = 0 or B = 1 then

return B

end if

// Get node information

B_node ← BDDPool[B]

var ← Label(B_node)

// If current variable comes before x in ordering

if var < x then

low ← Exists(Low(B_node), x)

high ← Exists(High(B_node), x)

return AddVertex(var, low, high)

// If current variable is x

else if var = x then

// ∃x.f = f[x↦0] ∨ f[x↦1]
return Or(Low(B_node), High(B_node))

// If current variable comes after x in ordering

else

// x not in this path

return B

end if

end function

function Restrict(B, x, b)

// Base cases

if B = 0 or B = 1 then



Exercise 3 (ex-1104.pdf)

Write the pseudo-code for the function Rename(B, xᵢ, xⱼ) that returns a ROBDD that
represents the function f(B)[xᵢ ↦ xⱼ].

Solution:

return B

end if

// Get node information

B_node ← BDDPool[B]

var ← Label(B_node)

// If current variable comes before x in ordering

if var < x then

low ← Restrict(Low(B_node), x, b)

high ← Restrict(High(B_node), x, b)

return AddVertex(var, low, high)

// If current variable is x

else if var = x then

// Return appropriate child based on b

if b = 0 then

return Restrict(Low(B_node), x, b)

else

return Restrict(High(B_node), x, b)

end if

// If current variable comes after x in ordering

else

// x not in this path

return B

end if

end function

function Rename(B, x_i, x_j)

// Base cases

if B = 0 or B = 1 then

return B

end if

// Use Shannon expansion:

// f[x_i ↦ x_j] = (¬x_j ∧ f[x_i↦0]) ∨ (x_j ∧ f[x_i↦1])



Temporal Logic and Büchi Automata
Exercise 1 (ex-1109.pdf)

For each of the pair of formulas below, say whether the two are equivalent and if not
whether one of them is stronger than the other.

Solution:

// Compute f[x_i↦0] and f[x_i↦1]
f_0 ← Restrict(B, x_i, 0)

f_1 ← Restrict(B, x_i, 1)

// Create ¬x_j and x_j BBDs

not_x_j ← AddVertex(x_j, 1, 0)  // ¬x_j

x_j ← AddVertex(x_j, 0, 1)     // x_j

// Compute (¬x_j ∧ f[x_i↦0])
term1 ← And(not_x_j, f_0)

// Compute (x_j ∧ f[x_i↦1])
term2 ← And(x_j, f_1)

// Return (term1 ∨ term2)
return Or(term1, term2)

end function

1. ♦(φ₁ ∧ φ₂) and (♦φ₁ ∧ ♦φ₂)
Not equivalent
♦(φ₁ ∧ φ₂) is stronger than (♦φ₁ ∧ ♦φ₂)
Counterexample: Consider a trace where φ₁ is true only at position 1 and φ₂ is true
only at position 2. Then ♦φ₁ ∧ ♦φ₂ is true, but ♦(φ₁ ∧ φ₂) is false.

2. ♦(φ₁ ∨ φ₂) and (♦φ₁ ∨ ♦φ₂)
Equivalent
♦(φ₁ ∨ φ₂) means "eventually either φ₁ or φ₂ is true"
(♦φ₁ ∨ ♦φ₂) means "either eventually φ₁ is true or eventually φ₂ is true"
These are logically equivalent

3. □(φ₁ ∧ φ₂) and (□φ₁ ∧ □φ₂)
Equivalent
□(φ₁ ∧ φ₂) means "always both φ₁ and φ₂ are true"
(□φ₁ ∧ □φ₂) means "always φ₁ is true and always φ₂ is true"
These are logically equivalent



Exercise 2 (ex-1109.pdf)
We saw that the always-formula □φ is equivalent to φ∧○□φ. Find analogous formulas
equivalent to the eventually-formula ♦φ and to the until-formula φ U ψ.

Solution: For ♦φ:

For φ U ψ:

Exercise 1 (ex-1113.pdf)
Write an algorithm that takes as inputs a transition system T and a set of states F, and
checks whether F is repeatable.

Solution:

4. □(φ₁ ∨ φ₂) and (□φ₁ ∨ □φ₂)
Not equivalent
(□φ₁ ∨ □φ₂) is stronger than □(φ₁ ∨ φ₂)
Counterexample: Consider a trace where φ₁ is true at even positions and φ₂ is true at
odd positions. Then □(φ₁ ∨ φ₂) is true, but (□φ₁ ∨ □φ₂) is false.

♦φ ≡ φ ∨ ○♦φ
Explanation: "Eventually φ" means either "φ is true now" or "φ will eventually be true
starting from the next state"

φ U ψ ≡ ψ ∨ (φ ∧ ○(φ U ψ))
Explanation: "φ until ψ" means either "ψ is true now" or "φ is true now and φ until ψ holds
from the next state"

function IsRepeatable(T, F)

// Find all reachable states

Reach ← Reachable(T)

// Find reachable states in F

ReachF ← Intersect(Reach, F)

// For each state in ReachF, check if it's in a cycle

foreach state s in ReachF do

// Try to find a cycle containing s

visited ← ∅
stack ← [s]

while not Empty(stack) do

current ← Pop(stack)



Exercise 1 (ex-1116.pdf)

For each of the LTL-formulas below, construct a Büchi automaton that accepts exactly
the traces that satisfy the formula.

Solution:

visited ← visited ∪ {current}

t ← FirstSuccState(T, current)

while t ≠ null do

if t = s then

// Found a cycle containing s

return ConstructWitness(T, s)

end if

if t ∉ visited then
Push(stack, t)

end if

t ← NextSuccState(T, current, t)

end while

end while

end foreach

return false

end function

function ConstructWitness(T, s)

// Find a path from an initial state to s

init_path ← FindPathToState(T, s)

// Find a cycle from s back to itself

cycle_path ← FindCycle(T, s)

return Concatenate(init_path, cycle_path)

end function

1. ♦e ∨ ♦f

q₀ (initial) → q₁ (accepting) : e

q₀ → q₂ (accepting) : f

q₀ → q₀ : ¬e ∧ ¬f



Exercise 2 (ex-1116.pdf)

Consider the following nondeterministic Büchi automaton for the LTL formula Persistenly
e. Can we construct an equivalent deterministic Büchi automaton?

Solution: The given automaton accepts traces where eventually e holds forever (□♦e).

No, we cannot construct an equivalent deterministic Büchi automaton. This is because the
language "eventually always e" (□♦e) is not expressible as a deterministic Büchi automaton.

The key insight is that deterministic Büchi automata can express safety properties and some
liveness properties, but not all liveness properties. Specifically, they cannot express fair
properties like "infinitely often e" (□♦e).

Exercise 1 (ex-1118-1.pdf)
Write an algorithm that takes as inputs a symbolic transition system T = (S, Init, Trans)
and a region A, and returns the region {s ∈ A | there exists t ∈ A that is reachable from s
in ≥ 1 transitions}.

Solution:

q₁ → q₁ : true

q₂ → q₂ : true

2. ♦e ∧ ♦f

q₀ (initial) → q₁ : e

q₀ → q₀ : ¬e

q₁ → q₂ (accepting) : f

q₁ → q₁ : ¬f

q₂ → q₂ : true

3. □(e → e U f)

q₀ (initial, accepting) → q₀ : ¬e ∨ f
q₀ → q₁ : e ∧ ¬f
q₁ → q₁ : e ∧ ¬f
q₁ → q₀ : f

function ComputeCanReach(T, A)

Result ← ∅
New ← A



Exercise 2 (ex-1118-1.pdf)

Use the algorithm of Exercise 1 to write a symbolic algorithm that takes as inputs a
symbolic transition system T = (S, Init, Trans) and a region F. If F is repeatable in T your
algorithm should return True. Otherwise, your algorithm should return False.

Solution:

while not IsEmpty(New) do

Next ← Intersect(Post(New, Trans), A)

if IsEmpty(Next) then

break

end if

Result ← Union(Result, New)

New ← Diff(Next, Result)

end while

return Result

end function

function IsRepeatable(T, F)

// Phase 1: compute Reach

Reach ← Init

New ← Init

while not IsEmpty(New) do

New ← Diff(Post(New, Trans), Reach)

Reach ← Union(Reach, New)

end while

// Phase 2: check repeatability

Recur ← Intersect(Reach, F)

while not IsEmpty(Recur) do

// Find states in Recur that can reach some state in Recur in ≥1

steps

CanReach ← ComputeCanReach(T, Recur)

if not IsEmpty(CanReach) then

return True

end if

// Update Recur to states that are in a potential cycle



Exercise 1 (ex-1118-2.pdf)

The symbolic algorithm for repeatability uses both post-image computation and pre-
image computation. Suppose we modify the algorithm by replacing both calls to Pre by
Post... How will this modification impact the correctness of the algorithm?

Solution: The modified algorithm would be incorrect. Using Post instead of Pre changes the
meaning from "states that can reach Recur" to "states that can be reached from Recur."

For the given example:

The issue is that the original algorithm checks if states in Recur can reach other states in
Recur (forming a cycle), while the modified algorithm just checks if states in Recur can reach
any state.

Exercise 2 (ex-1118-2.pdf)

Prove that the symbolic algorithm is correct.

Solution: To prove correctness, we need to show two directions:

Recur ← Intersect(Recur, CanReach)

end while

return False

end function

Original algorithm correctly identifies that F is not repeatable (there are no cycles)
Modified algorithm would incorrectly conclude that F is repeatable because the
PreReach set would include all states, and Recur would include all states

1. If F is repeatable, the algorithm returns True:
If F is repeatable, there exists a reachable state s ∈ F such that s is in a cycle
This state s will be in the initial Recur set
Since s is in a cycle, there's a path of ≥1 transitions from s back to itself
This means s is in PreReach, and so s remains in Recur in each iteration
Eventually, the algorithm will determine that Recur is a subset of PreReach, returning
True

2. If the algorithm returns True, F is repeatable:
The algorithm returns True only when Recur becomes a subset of PreReach
This means that for every state s in Recur, there is a path from s to some state t in
Recur
By iterating this property, we can construct an infinite path that visits Recur infinitely
often



Exercise 1 (ex-1123.pdf)
Consider the LTL formula φ = (e U ○f) ∨ ¬e. First compute the closure Sub(φ). Then
apply the tableau construction to build the generalized Büchi automaton Mφ.

Solution: First, compute Sub(φ):

The tableau construction yields a generalized Büchi automaton with states representing
maximal consistent subsets of Sub(φ). The reachable states would include:

With transitions based on next-state formulas and accepting conditions for each until
formula.

Exercise 2 (ex-1123.pdf)

Given a Generalized Büchi automaton M over a set V of input variables, show how to
build a (standard) Büchi automaton M' over the same input variables V that accepts the
same language of M.

Solution: To convert a generalized Büchi automaton M = (V, Q, Init, {F₁, F₂, ..., Fₖ}, E) into a
standard Büchi automaton M':

Since Recur ⊆ F, this path visits F infinitely often, making F repeatable

φ = (e U ○f) ∨ ¬e
Sub(φ) includes:

φ, ¬φ
e U ○f, ¬(e U ○f)
¬e, e
○f, ¬○f
f, ¬f
○(e U ○f), ¬○(e U ○f)

State 1: {φ, ¬e, ¬(e U ○f), ...}
State 2: {φ, e, e U ○f, ○f, ...}
State 3: {φ, e, e U ○f, ¬○f, ○(e U ○f), ...}

1. Create k+1 copies of the state space: Q × {0, 1, ..., k}
2. For each state (q, i) and each edge q → q' in M:

If q' ∈ Fᵢ, add an edge (q, i) → (q', (i+1) mod (k+1))
Otherwise, add an edge (q, i) → (q', i)

3. Set initial states to {(q, 0) | q ∈ Init}
4. Set accepting states to {(q, 0) | q ∈ Q}



This construction ensures that an infinite run is accepting in M' if and only if it visits all
accepting sets F₁, F₂, ..., Fₖ in M infinitely often.

Controller Synthesis
Exercise 1 (ex-1213.pdf)

Two philosophers are seated at a round table where there are two plates of food, one in
front of each philosopher, and two forks. Provide a model for the two philosophers and
the forks.

Solution: Philosopher 1 automaton:

Philosopher 2 automaton:

Fork 1 automaton:

States: {Thinking, HasFork1, HasFork2, Eating}

Initial state: Thinking

Transitions:

Thinking → HasFork1: p1f1

Thinking → HasFork2: p1f2

HasFork1 → Eating: p1f2

HasFork2 → Eating: p1f1

Eating → Thinking: r1

States: {Thinking, HasFork1, HasFork2, Eating}

Initial state: Thinking

Transitions:

Thinking → HasFork1: p2f1

Thinking → HasFork2: p2f2

HasFork1 → Eating: p2f2

HasFork2 → Eating: p2f1

Eating → Thinking: r2

States: {Free, UsedBy1, UsedBy2}

Initial state: Free

Transitions:

Free → UsedBy1: p1f1

Free → UsedBy2: p2f1

UsedBy1 → Free: r1

UsedBy2 → Free: r2



Fork 2 automaton:

Exercise 2 (ex-1213.pdf)

Consider your solution to Exercise 1 about the two philosophers. Establish which states
of the parallel composition of the four automata are reachable, which states have
deadlock, and which states are blocking.

Solution: The reachable states of the parallel composition include:

Deadlock states:

Blocking states: The deadlock states are also blocking states, as they cannot reach a
marked state.

Exercise 3 (ex-1213.pdf)
Add an automaton to the model of the dining philosophers that prevents deadlocks and
blocking states from occurring.

Solution: We can add a supervisor automaton:

States: {Free, UsedBy1, UsedBy2}

Initial state: Free

Transitions:

Free → UsedBy1: p1f2

Free → UsedBy2: p2f2

UsedBy1 → Free: r1

UsedBy2 → Free: r2

(Thinking, Thinking, Free, Free)
(HasFork1, Thinking, UsedBy1, Free)
(HasFork2, Thinking, Free, UsedBy1)
(Thinking, HasFork1, UsedBy2, Free)
(Thinking, HasFork2, Free, UsedBy2)
(Eating, Thinking, UsedBy1, UsedBy1)
(Thinking, Eating, UsedBy2, UsedBy2)
(HasFork1, HasFork2, UsedBy1, UsedBy2)
(HasFork2, HasFork1, UsedBy2, UsedBy1)

(HasFork1, HasFork2, UsedBy1, UsedBy2): P1 has fork 1 and P2 has fork 2, neither can
proceed
(HasFork2, HasFork1, UsedBy2, UsedBy1): P1 has fork 2 and P2 has fork 1, neither can
proceed



This supervisor ensures that only one philosopher can pick up forks at a time, preventing the
deadlock situation.

Exercise 4 (ex-1213.pdf)

Compare your solution with the solutions of the other students. Do they allow the same
set of behaviours?

Solution: Different solutions might include:

These solutions might differ in permissiveness:

Exercise 5 (ex-1213.pdf)
Use the basic supervisory control synthesis algorithm to compute the maximally
permissive proper supervisor for the dining philosophers system.

Solution: Using the basic supervisory control synthesis algorithm:

The resulting supervisor prevents both philosophers from having exactly one fork each, as
this leads to a deadlock. The supervisor disables the transitions that would lead to these

States: {Both, OnlyP1, OnlyP2}

Initial state: Both

Transitions:

Both → OnlyP1: p1f1, p1f2

Both → OnlyP2: p2f1, p2f2

OnlyP1 → Both: r1

OnlyP2 → Both: r2

1. Resource hierarchy (numbering forks)
2. Dining philosophers with conductor
3. Chandy/Misra solution

The resource hierarchy solution allows more concurrency than strict mutual exclusion
The conductor solution is less permissive but simpler
The solution with a supervisor preventing both philosophers from having forks
simultaneously is the least permissive

1. Start with the uncontrolled plant (philosophers and forks)
2. Compute the set of blocking states
3. Compute the set of bad states (blocking states and states that can reach a bad state via

uncontrollable events)
4. Remove transitions with controllable events that target bad states
5. Remove unreachable states and transitions



states.

Exercise 1 (ex-1215.pdf)

Use the basic supervisory control synthesis algorithm to compute the maximally
permissive proper supervisor for the dining philosophers system.

Solution: This is the same as Exercise 5 from ex-1213.pdf.

The maximally permissive proper supervisor allows transitions where:

Exercise 2 (ex-1215.pdf)

The solution to the dining philosophers problem you obtained on Exercise 1 suffers from
individual starvation. Define as a requirement that every philosopher regularly gets a
possibility to eat if he wants to.

Solution: The requirement that every philosopher regularly gets a possibility to eat is a
liveness or progress property, not a safety property.

We can define it as:

To enforce this property, we need to modify the supervisor to ensure fairness. One approach
is to introduce a turn-based mechanism:

The supervisor would only allow a philosopher to pick up forks when it's their turn, ensuring
that starvation cannot occur.

If both forks are free, either philosopher can pick up either fork
If philosopher 1 has fork 1, philosopher 2 cannot pick up fork 2
If philosopher 1 has fork 2, philosopher 2 cannot pick up fork 1
If philosopher 2 has fork 1, philosopher 1 cannot pick up fork 2
If philosopher 2 has fork 2, philosopher 1 cannot pick up fork 1

For philosopher 1: □(Thinking₁ → ♦Eating₁)
For philosopher 2: □(Thinking₂ → ♦Eating₂)

States: {Turn1, Turn2}

Initial state: Turn1

Transitions:

Turn1 → Turn2: r1

Turn2 → Turn1: r2


